
504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 1

2.1 File Handling and Directories

2.1.1 Including files using include and require

 Including files using include and require

include()

➢ One of the most useful tools is to insert another php script from a file into the current php script.

➢ The command include("filename"); will import contents of a text file called filename and insert it at the

include spot.

➢ The included text may be composed of XHTML, PHP or both.

➢ The include() function is mostly used when the file is not required and the application should continue to

execute its process when the file is not found.

➢ The include() function will only produce a warning (E_WARNING) and the script will continue to execute.

Example:-

File 1: menu.php

HOME

Contact

Staff

File 2 :Student.php

<html>

<body>

<?php

Include(“menu.php”);

// if menu.php is not found then also remaining echo statement is script will executed

?>

</body>

</html>

require()

➢ Syntax and uses is as same as include() but the difference is that, if the file is not found the remaining script

is also not executed.

➢ The require() function is mostly used when the file is mandatory for the application.

➢ The require() will produce a fatal error (E_COMPILE_ERROR) along with the warning and the script will

stop its execution.

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 2

2.1.2 File operations: fopen(), fread(), fwrite(), fclose()

PHP File Handling

In PHP, File handling is the process of interacting with files on the server, such as reading files, writing to a file,

creating new files, or deleting existing ones. File handling is essential for applications that require the storage and

retrieval of data, such as logging systems, user-generated content, or file uploads.

Types of File Operations in PHP

Several types of file operations can be performed in PHP:

➢ Reading Files: PHP allows you to read data from files either entirely or line by line.

➢ Writing to Files: You can write data to a file, either overwriting existing content or appending to the end.

➢ File Metadata: PHP allows you to gather information about files, such as their size, type, and last modified

time.

➢ File Uploading: PHP can handle file uploads via forms, enabling users to submit files to the server.

Common File Handling Functions in PHP

• fopen() - Opens a file

• fclose() - Closes a file

• fread() - Reads data from a file

• fwrite() - Writes data to a file

• file_exists() - Checks if a file exists

• unlink() - Deletes a file

Opening and Closing Files

➢ Before you can read or write to a file, you need to open it using the fopen() function,

which returns a file pointer resource. Once you're done working with the file, you

should close it using fclose() to free up resources.

Examples:
<?php

// Open the file in read mode

$file = fopen("gfg.txt", "r");

if ($file) {

 echo "File opened successfully!";

 fclose($file); // Close the file

} else {

 echo "Failed to open the file.";

}

https://www.geeksforgeeks.org/php/php-fopen-function-open-file-or-url/
https://www.geeksforgeeks.org/php/php-fclose-function/
https://www.geeksforgeeks.org/php/php-fread-function/
https://www.geeksforgeeks.org/php/php-fwrite-function/
https://www.geeksforgeeks.org/php/php-file_exists-function/
https://www.geeksforgeeks.org/php/php-unlink-function/

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 3

?>

File Modes in PHP

Files can be opened in any of the following modes:

➢ "w" – Opens a file for writing only. If the file does not exist, then a new file is created, and if the file

already exists, then the file will be truncated (the contents of the file are erased).

➢ "r" – File is open for reading only.

➢ "a" – File is open for writing only. The file pointer points to the end of the file. Existing data in the file is

preserved.

➢ "w+" – Opens file for reading and writing both. If the file does not exist, then a new file is created, and if

the file already exists, then the contents of the file are erased.

➢ "r+" – File is open for reading and writing both.

➢ "a+" – File is open for write/read. The file pointer points to the end of the file. Existing data in the file is

preserved. If the file is not there, then a new file is created.

➢ "x" – New file is created for write only.

1. Reading the Entire File

You can read the entire content of a file using the fread() function or the file_get_contents() function.

<?php

$file = fopen("gfg.txt", "r");

$content = fread($file, filesize("gfg.txt"));

echo $content;

fclose($file);

?>

2. Reading a File Line by Line

You can use the fgets() function to read a file line by line.

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 4

<?php

$file = fopen("gfg.txt", "r");

if ($file) {

 while (($line = fgets($file)) !== false) {

 echo $line . "
";

 }

 fclose($file);

}

?>

3. Writing to Files

You can write to files using the fwrite() function. It writes data to an open file in the specified mode.

<?php

// Open the file in write mode

$file = fopen("gfg.txt", 'w');

if ($file) {

 $text = "Hello world\n";

 fwrite($file, $text);

 fclose($file);

}

?>

4. Deleting Files

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 5

Use the unlink() function to delete the file in PHP.

<?php

if (file_exists("gfg.txt")) {

 unlink("gfg.txt");

 echo "File deleted successfully!";

} else {

 echo "File does not exist.";

}

?>

2.1.3 File upload using $_FILES and move_uploaded_file()

What is $_FILES?

➢ $_FILES is a PHP superglobal that holds information about uploaded files via an HTML form.

➢ It’s an associative array of items sent via HTTP POST method with enctype="multipart/form-data".

Syntax of $_FILES:

$_FILES['input_name']['name'] // Original file name

$_FILES['input_name']['type'] // MIME type of the file

$_FILES['input_name']['tmp_name'] // Temporary location on the server

$_FILES['input_name']['error'] // Error code

$_FILES['input_name']['size'] // Size of uploaded file in bytes

move_uploaded_file()

➢ This function moves the uploaded file from the temporary location to a permanent location on the server.

Syntax:

move_uploaded_file(file, dest)

Parameter Values

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 6

Parameter Description

file Required. Specifies the filename of the uploaded file

dest Required. Specifies the new location for the file

Example:

$_FILES['myfile']['tmp_name']

Example: Basic File Upload

1. HTML Form (upload.html)

<!DOCTYPE html>

<html>

<head>

 <title>Upload File</title>

</head>

<body>

 <h2>Upload a File</h2>

 <form action="upload.php" method="POST" enctype="multipart/form-data">

 <label>Select file:</label>

 <input type="file" name="myfile">

 <input type="submit" name="submit" value="Upload">

 </form>

</body>

</html>

2. PHP Script (upload.php)

<?php

if (isset($_POST['submit'])) {

 $uploadDir = "uploads/";

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 7

 $uploadFile = $uploadDir . basename($_FILES["myfile"]["name"]);

 // Check if file was uploaded without errors

 if ($_FILES["myfile"]["error"] === 0) {

 if (move_uploaded_file($_FILES["myfile"]["tmp_name"], $uploadFile)) {

 echo " File uploaded successfully: " . htmlspecialchars($_FILES["myfile"]["name"]);

 } else {

 echo " Failed to move uploaded file.";

 }

 } else {

 echo "Error uploading file. Error code: " . $_FILES["myfile"]["error"];

 }

}

?>

 Directory Structure

your_project/

├── upload.html

├── upload.php

└── uploads/ ← Make sure this folder exists and is writable (chmod 755 or 777)

2.1.4 File download using PHP headers

Key points

• Never echo anything before headers.

• Validate/whitelist the requested file (avoid .. traversal).

• Send correct headers: Content-Type, Content-Length, Content-Disposition.

• Use readfile() (simple) or stream in chunks (big files).

2.1.5 Directory operations: opendir(), readdir(), mkdir(), rmdir()

• opendir() – Opens a directory handle to read its contents.

• readdir() – Reads the next file or folder name from an opened directory handle.

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 8

• mkdir() – Creates a new directory with given permissions.

• rmdir() – Removes an empty directory from the file system.

1. opendir() + readdir() – Read directory contents

<?php

$dir = "uploads"; // folder to read

if ($handle = opendir($dir)) {

 echo "Files in $dir:
";

 while (($file = readdir($handle)) !== false) {

 echo $file . "
"; // will include . and ..

 }

 closedir($handle);

}

?>

2. mkdir() – Create a new directory

<?php

$folder = "new_folder";

if (!is_dir($folder)) {

 mkdir($folder);

 echo "Folder created: $folder";

} else {

 echo "Folder already exists.";

}

?>

3. rmdir() – Remove an empty directory

<?php

$folder = "old_folder";

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 9

if (is_dir($folder)) {

 rmdir($folder); // only works if folder is empty

 echo "Folder deleted: $folder";

} else {

 echo "Folder not found.";

}

?>

4. Combine – opendir() + mkdir() + rmdir()

<?php

$dir = "test_dir";

// Create directory

if (!is_dir($dir)) {

 mkdir($dir);

 echo "Created $dir
";

}

// Read directory

if ($handle = opendir($dir)) {

 echo "Contents of $dir:
";

 while (($file = readdir($handle)) !== false) {

 echo $file . "
";

 }

 closedir($handle);

}

// Remove directory

if (is_dir($dir)) {

 rmdir($dir);

 echo "Deleted $dir";

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 10

}

?>

2.2 Forms, Filters, and JSON

2.2.1 Designing and handling HTML forms

HTML forms allow users to send data to the server, and PHP can handle this data using $_GET or $_POST

superglobals.

Example – HTML + PHP Form Handling

<!-- form.html -->

<form action="process.php" method="post">

 Name: <input type="text" name="username">

 Email: <input type="email" name="email">

 <input type="submit" value="Submit">

</form>

<!—php code-->

<?php

// process.php

if ($_SERVER['REQUEST_METHOD'] === 'POST') {

 $name = $_POST['username'];

 $email = $_POST['email'];

 echo "Hello, $name! Your email is $email.";

}

?>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 11

2.2.2 Server-side validation techniques

Server-side validation ensures that user input is checked on the server before processing, protecting against invalid

data and security threats.

Example – Simple Validation

<?php

if ($_SERVER['REQUEST_METHOD'] === 'POST') {

 $name = trim($_POST['username']);

 $email = trim($_POST['email']);

 $errors = [];

 if (empty($name)) {

 $errors[] = "Name is required.";

 }

 if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $errors[] = "Invalid email format.";

 }

 if ($errors) {

 foreach ($errors as $err) {

 echo "<p style='color:red;'>$err</p>";

 }

 } else {

 echo "Form submitted successfully!";

 }

}

?>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 12

2.2.3 PHP filters: filter_var() and constants

What are Filters?

• Filters are used in PHP to validate (check) and sanitize (clean) user input.

• filter_var() is the main function used for this.

Syntax:

filter_var(value, filter_type);

Common Filter Constants:

Constant Purpose

FILTER_VALIDATE_EMAIL Checks if the value is a valid email.

FILTER_VALIDATE_INT Checks if the value is a valid integer.

FILTER_SANITIZE_STRING Removes unwanted HTML and special characters.

FILTER_VALIDATE_URL Checks if the value is a valid URL.

Example – Validate Email

<?php

$email = "test@example.com";

if (filter_var($email, FILTER_VALIDATE_EMAIL)) {

 echo "Valid email!";

} else {

 echo "Invalid email!";

}

?>

Example – Sanitize String

<?php

$text = "<h1>Hello!</h1>";

$clean = filter_var($text, FILTER_SANITIZE_STRING);

echo $clean; // Output: Hello!

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 13

?>

2.2.4 Parsing and generating JSON with json_encode() and json_decode()

What is JSON?

• JSON (JavaScript Object Notation) is a format to store and share data.

• PHP can generate JSON from arrays/objects and parse JSON back to PHP.

1. Generating JSON – json_encode()

<?php

$data = [

 "name" => "Rahul",

 "age" => 20,

 "city" => "Surat"

];

$json = json_encode($data);

echo $json;

// Output: {"name":"Rahul","age":20,"city":"Surat"}

?>

2. Parsing JSON – json_decode()

<?php

$json = '{"name":"Rahul","age":20,"city":"Surat"}';

// Decode to PHP object

$obj = json_decode($json);

echo $obj->name; // Rahul

// Decode to PHP associative array

$arr = json_decode($json, true);

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 14

echo $arr["city"]; // Surat

?>

2.3 Cookies, Sessions, and Emails

2.3.1 Creating and accessing cookies using setcookie() and $_COOKIE

What is Cookies?

• A cookie is a small piece of data stored in the browser by the server.

• setcookie() is used to create or update a cookie.

• $_COOKIE is used to read cookie values.

• Cookies are sent back to the server with every request until they expire or are deleted.

Syntax:

setcookie(name, value, expire, path, domain, secure, httponly);

Example 1 – Create a Cookie

<?php

// Create cookie "username" valid for 1 hour

setcookie("username", "Rahul", time() + 3600, "/");

echo "Cookie 'username' has been set!";

// Note: Cookie will be available on next page load

?>

Example 2 – Read a Cookie

<?php

if (isset($_COOKIE["username"])) {

 echo "Welcome back, " . $_COOKIE["username"];

} else {

 echo "Hello, new visitor!";

}

?>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 15

Example 3 – Delete a Cookie

<?php

// Set cookie expiry time in the past to delete it

setcookie("username", "", time() - 3600, "/");

echo "Cookie deleted.";

?>

• Cookies are stored on the client (browser).

• Always set cookies before any HTML output.

• Use time() to set expiry (e.g., time() + 86400 = 1 day).

2.3.2 Session management with session_start() and $_SESSION

What is Session?

• A session stores data on the server for each user.

• Unlike cookies (stored in browser), session data is not visible to the user.

• session_start() must be called before any HTML output to start or resume a session.

• $_SESSION is a special array that holds session variables.

Example 1 – Start a Session & Store Data

<?php

session_start(); // Start or resume a session

$_SESSION["username"] = "Rahul";

$_SESSION["role"] = "Student";

echo "Session variables are set!";

?>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 16

Example 2 – Access Session Data

<?php

session_start(); // Resume session

if (isset($_SESSION["username"])) {

 echo "Welcome, " . $_SESSION["username"];

 echo "
Your role is: " . $_SESSION["role"];

} else {

 echo "No session data found.";

}

?>

Example 3 – Remove Session Data

<?php

session_start();

// Remove one variable

unset($_SESSION["username"]);

// Remove all session variables

session_unset();

// Destroy session completely

session_destroy();

echo "Session ended.";

?>

• Sessions use a session ID stored in a cookie (PHPSESSID) to track the user.

• Always call session_start() before using $_SESSION.

• Use session_destroy() to end a session completely.

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 17

2.3.3 Sending Emails using mail() in PHP

• The mail() function is used to send emails directly from PHP.

• Works only if the server has mail service enabled (e.g., Sendmail, Postfix, SMTP).

syntax:

mail(to, subject, message, headers);

Example 1 – Simple Email

<?php

$to = "student@example.com";

$subject = "Welcome to PHP Class";

$message = "Hello Student,\n\nThis is a test email from PHP.";

$headers = "From: teacher@example.com";

if (mail($to, $subject, $message, $headers)) {

 echo " Email sent successfully!";

} else {

 echo " Email sending failed!";

}

?>

Example 2 – Email with HTML Content

<?php

$to = "student@example.com";

$subject = "PHP HTML Email";

$message = "

<html>

<head><title>PHP Email</title></head>

<body>

<h2>Welcome Student!</h2>

<p>This is an HTML email from your teacher.</p>

</body>

</html>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 18

";

// To send HTML mail, set content-type header

$headers = "MIME-Version: 1.0" . "\r\n";

$headers .= "Content-type:text/html;charset=UTF-8" . "\r\n";

$headers .= "From: teacher@example.com";

if (mail($to, $subject, $message, $headers)) {

 echo " HTML Email sent!";

} else {

 echo " Failed to send HTML email!";

}

?>

Example 3 – Multiple Recipients

<?php

$to = "student1@example.com, student2@example.com";

$subject = "Class Reminder";

$message = "This is a reminder for tomorrow's PHP session.";

$headers = "From: teacher@example.com";

mail($to, $subject, $message, $headers);

?>

• Use a real email server or tools like XAMPP with Mercury Mail, SMTP services, or PHPMailer for testing.

• Always set proper From: header to avoid spam filters.

• For sending bulk or secure emails, PHPMailer is better than mail().

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 19

2.3.4 Email formatting: headers, subject, attachments

In PHP, emails are sent using the mail() function:

mail(to, subject, message, headers);

• to → Receiver’s email.

• subject → Email subject.

• message → Body of the email.

• headers → Additional information (From, CC, BCC, MIME type, etc.).

1. Sending a Simple Email

<?php

$to = "student@example.com";

$subject = "Welcome to PHP Class";

$message = "Hello Student,\nThis is a simple test email from PHP.";

$headers = "From: teacher@example.com";

if (mail($to, $subject, $message, $headers)) {

 echo "Email sent successfully!";

} else {

 echo "Email sending failed.";

}

?>

2. Adding Headers (From, CC, BCC)

<?php

$to = "student@example.com";

$subject = "Class Notice";

$message = "Dear Student,\nTomorrow we have a PHP practical exam.";

$headers = "From: teacher@example.com\r\n";

$headers .= "CC: hod@example.com\r\n";

$headers .= "BCC: admin@example.com\r\n";

mail($to, $subject, $message, $headers);

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 20

?>

3. Sending HTML Email (Formatting inside message)

<?php

$to = "student@example.com";

$subject = "HTML Email Example";

$message = "

<html>

<head><title>Email Test</title></head>

<body>

<h2 style='color:blue;'>Welcome to PHP Class</h2>

<p>This email is HTML formatted.</p>

</body>

</html>

";

// Always set content-type when sending HTML email

$headers = "MIME-Version: 1.0\r\n";

$headers .= "Content-type:text/html;charset=UTF-8\r\n";

$headers .= "From: teacher@example.com";

mail($to, $subject, $message, $headers);

?>

4. Sending Email with Attachment

Sending attachments requires MIME (Multipurpose Internet Mail Extensions) format.

<?php

$to = "student@example.com";

$subject = "Assignment File Attached";

$message = "Hello, please find the attached file.";

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 21

$file = "assignment.pdf"; // file must exist on server

$content = file_get_contents($file);

$content = chunk_split(base64_encode($content));

$separator = md5(time());

$eol = "\r\n";

// Headers

$headers = "From: teacher@example.com\r\n";

$headers .= "MIME-Version: 1.0\r\n";

$headers .= "Content-Type: multipart/mixed; boundary=\"".$separator."\"\r\n";

// Body

$body = "--$separator$eol";

$body .= "Content-Type: text/plain; charset=\"UTF-8\"$eol";

$body .= "Content-Transfer-Encoding: 7biteoleol";

$body .= $message . "$eol";

// Attachment

$body .= "--$separator$eol";

$body .= "Content-Type: application/octet-stream; name=\"$file\"$eol";

$body .= "Content-Transfer-Encoding: base64$eol";

$body .= "Content-Disposition: attachment; filename=\"$file\"$eol$eol";

$body .= $content . "$eol";

$body .= "--$separator--";

// Send email

mail($to, $subject, $body, $headers);

?>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 22

Summary

• Headers → Add extra info like From, CC, BCC, MIME type.

• Subject → Title of the email.

• Attachments → Use MIME type encoding and base64.

• HTML Email → Format emails with colors, bold, headings.

2.4 OOP and Exception Handling in PHP

2.4.1 Creating classes and objects

• In PHP, Object-Oriented Programming (OOP) makes it easier to organize and reuse code. The two

fundamental building blocks in OOP are classes and objects.

• An object is an instance of a class created using the new keyword.

PHP Classes

• A class in PHP is a blueprint for creating objects. It defines the properties (variables) and methods

(functions) that the objects created from the class will have.

• By using classes, we can group related data and actions, making it easier to organize and manage our code.

In PHP a class is defined using the class keyword, followed by the class name and curly braces.

Syntax:

<?php

class Cars {

 // PHP code goes here...

}

?>

 PHP Objects

• An object is an instance of a class. When you create an object from the class, memory is allocated, and the

object can store data and perform actions defined in the class.

• To create an object, we use the new keyword.

Syntax:

$objectName = new ClassName($value);

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 23

 Examples:

<?php

// Defining a class

class Car {

 // Properties (variables inside a class)

 public $brand;

 public $color;

 // Method (function inside a class)

 public function startEngine() {

 return "The engine has started!";

 }

}

// Creating an object of Car class

$myCar = new Car();

// Accessing properties

$myCar->brand = "Tesla";

$myCar->color = "Red";

// Accessing methods

echo $myCar->brand . " is " . $myCar->color . "
";

echo $myCar->startEngine();

?>

Output:

Tesla is Red

The engine has started!

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 24

2.4.2 Using constructors and property visibility

1. Constructors in PHP

A constructor is a special function in a class with the name __construct().

It is automatically called when a new object is created.

• It is used to initialize properties of the class.

• Saves us from setting values manually after object creation.

Example: Using Constructor

<?php

class Student {

 public $name;

 public $rollNo;

 // Constructor

 public function __construct($name, $rollNo) {

 $this->name = $name;

 $this->rollNo = $rollNo;

 }

 // Method

 public function displayInfo() {

 return "Name: " . $this->name . ", Roll No: " . $this->rollNo;

 }

}

// Objects with constructor

$student1 = new Student("Rahul", 101);

$student2 = new Student("Priya", 102);

echo $student1->displayInfo() . "
";

echo $student2->displayInfo();

?>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 25

Output:

Name: Rahul, Roll No: 101

Name: Priya, Roll No: 102

2. Property Visibility in PHP

In PHP, visibility controls how class properties and methods can be accessed.

• public → accessible everywhere (inside/outside class).

• private → accessible only inside the class.

• protected → accessible inside the class and child classes (inheritance).

Example: Property Visibility

<?php

class BankAccount {

 public $accountHolder; // Public property

 private $balance; // Private property

 // Constructor

 public function __construct($holder, $amount) {

 $this->accountHolder = $holder;

 $this->balance = $amount;

 }

 // Public method to check balance

 public function getBalance() {

 return "Balance: $" . $this->balance;

 }

 // Public method to deposit money

 public function deposit($amount) {

 $this->balance += $amount;

 return "Deposited: $" . $amount . " | New " . $this->getBalance();

 }

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 26

}

// Creating object

$account = new BankAccount("Amit", 5000);

echo $account->accountHolder . "
"; // Allowed (public)

// echo $account->balance; ERROR (private)

echo $account->getBalance() . "
";

echo $account->deposit(2000);

?>

Output:

Amit

Balance: $5000

Deposited: $2000 | New Balance: $7000

2.4.3 Inheritance and method overriding

 1. Inheritance in PHP

• Inheritance allows a class (child class) to use the properties and methods of another class (parent class).

• Use the keyword extends to inherit.

• It supports code reusability.

Example: Inheritance

<?php

// Parent class

class Person {

 public $name;

 public function __construct($name) {

 $this->name = $name;

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 27

 }

 public function showName() {

 return "Name: " . $this->name;

 }

}

// Child class (inherits Person)

class Student extends Person {

 public $rollNo;

 public function __construct($name, $rollNo) {

 // Call parent constructor

 parent::__construct($name);

 $this->rollNo = $rollNo;

 }

 public function showDetails() {

 return $this->showName() . ", Roll No: " . $this->rollNo;

 }

}

// Create object of child class

$student1 = new Student("Rahul", 101);

echo $student1->showDetails();

?>

Output:

Name: Rahul, Roll No: 101

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 28

Types of Inheritance in PHP

1. Inheritance → Supported

• One child class inherits from one parent class.

Example

class ParentClass { }

class ChildClass extends ParentClass { }

2. Multilevel Inheritance → Supported

A class inherits from another child class (grandparent → parent → child).

Example

class A { }

class B extends A { }

class C extends B { }

3. Hierarchical Inheritance → Supported

Multiple child classes inherit from the same parent class.

class ParentClass { }

class Child1 extends ParentClass { }

class Child2 extends ParentClass { }

Summary

• Supported: Single, Multilevel, Hierarchical inheritance.

• Not Supported: Multiple inheritance, Hybrid inheritance.

• Solution for Multiple → Use Interfaces or Traits.

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 29

2. Method Overriding in PHP

• Method overriding happens when a child class redefines (overrides) a method from the parent class.

• The child’s method replaces the parent’s method when called.

• Use parent::methodName() if you still want to call parent method.

Example: Method Overriding

<?php

// Parent class

class Teacher {

 public function teach() {

 return "Teaching in a general way.";

 }

}

// Child class overrides the method

class MathTeacher extends Teacher {

 public function teach() {

 return "Teaching Mathematics with formulas and problem-solving.";

 }

}

// Another child class

class ScienceTeacher extends Teacher {

 public function teach() {

 return "Teaching Science with experiments and observations.";

 }

}

// Objects

$t1 = new MathTeacher();

$t2 = new ScienceTeacher();

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 30

echo $t1->teach() . "
";

echo $t2->teach();

?>

Output:

Teaching Mathematics with formulas and problem-solving.

Teaching Science with experiments and observations.

PHP - The final Keyword

• The final keyword can be used to prevent class inheritance or to prevent method overriding.

• The following example shows how to prevent class inheritance:

<?php

final class Fruit {

 // some code

}

// will result in error

class Strawberry extends Fruit {

 // some code

}

?>

The following example shows how to prevent method overriding:

<?php

class Fruit {

 final public function intro() {

 // some code

 }

}

class Strawberry extends Fruit {

 // will result in error

 public function intro() {

 // some code

 }

}

?>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 31

2.4.4 Exception handling: try, catch, finally, throw

 What is Exception Handling?

• Exceptions are errors that can be caught and handled without stopping the script.

• PHP provides try, catch, finally, and throw for exception handling.

Types of Exception Handling

• try - A function using an exception should be in a "try" block. If the exception does not trigger, the code

will continue as normal. However if the exception triggers, an exception is "thrown".

• throw - This is how you trigger an exception. Each "throw" must have at least one "catch".

• catch - A "catch" block retrieves an exception and creates an object containing the exception

information.

• finally - Always executes (cleanup code), no matter what happens.

1. try and catch

• Code inside try { } is executed.

• If an exception occurs, control goes to catch { }.

Example

<?php

try {

 // risky code

 $num = 10 / 0; // Division by zero (error)

 echo $num;

} catch (Exception $e) {

 // handling error

 echo "Error: " . $e->getMessage();

}

?>

OUTPUT:

But in PHP, 10/0 raises a warning (not an exception).

So, usually, we throw exceptions manually.

2. throw

• Used to manually throw an exception.

• Must be caught by catch.

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 32

Example

<?php

function divide($a, $b) {

 if ($b == 0) {

 throw new Exception("Division by zero is not allowed.");

 }

 return $a / $b;

}

try {

 echo divide(10, 0);

} catch (Exception $e) {

 echo "Caught Exception: " . $e->getMessage();

}

?>

OUTPUT:

Caught Exception: Division by zero is not allowed.

3. finally

• The finally { } block always executes, whether an exception occurs or not.

• Useful for cleanup tasks (closing DB connection, files, etc.).

Example

<?php

function divide($a, $b) {

 if ($b == 0) {

 throw new Exception("Division by zero not allowed.");

 }

 return $a / $b;

}

try {

 echo divide(10, 2);

} catch (Exception $e) {

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 33

 echo "Error: " . $e->getMessage();

} finally {

 echo "
Execution completed!";

}

?>

OUTPUT:

5

Execution completed!

4. Multiple catch Blocks

• You can catch different types of exceptions separately.

<?php

try {

 throw new InvalidArgumentException("Invalid argument!");

} catch (InvalidArgumentException $e) {

 echo "Caught InvalidArgumentException: " . $e->getMessage();

} catch (Exception $e) {

 echo "Caught General Exception: " . $e->getMessage();

}

?>

Summary

• try → Code that may throw exception.

• catch → Handles the exception.

• throw → Used to raise an exception.

• finally → Always executes (cleanup code).

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 34

2.4.5 Input Validation using Regular Expressions in PHP

What is Input Validation?

• Input validation means checking user inputs (like email, phone number, password) to make sure they

follow the correct format.

• In PHP, we use Regular Expressions (regex) with preg_match() function for validation.

preg_match() Function

Syntax:

preg_match(pattern, string)

Returns 1 if pattern matches, 0 if not.

Common Validation Examples

1. Validate Email

<?php

$email = "student@example.com";

if (preg_match("/^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-z]{2,}$/", $email)) {

 echo "Valid Email";

} else {

 echo "Invalid Email";

}

?>

Output:

Valid Email

2. Validate Phone Number (10 digits)

<?php

$phone = "9876543210";

if (preg_match("/^[0-9]{10}$/", $phone)) {

 echo "Valid Phone Number";

} else {

 echo "Invalid Phone Number";

}

?>

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 35

Output:

Valid Phone Number

3. Validate Username (only letters & numbers, 5–15 chars)

<?php

$username = "student123";

if (preg_match("/^[a-zA-Z0-9]{5,15}$/", $username)) {

 echo "Valid Username";

} else {

 echo "Invalid Username";

}

?>

Output:

Valid Username

4. Validate Strong Password

At least: 1 uppercase, 1 lowercase, 1 digit, 1 special character, min 8 chars

<?php

$password = "Abcd@1234";

if (preg_match("/^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\W]).{8,}$/", $password)) {

 echo "Strong Password";

} else {

 echo "Weak Password";

}

?>

Output:

Strong Password

504: Web Framework and
Ser vices

Unit 2: Advanced PHP and File

Management

TYBCA (Sem – 5) 36

