504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.1 File Handling and Directories

2.1.1 Including files using include and require

Including files using include and require

include()

>
>

>

One of the most useful tools is to insert another php script from a file into the current php script.

The command include("filename"); will import contents of a text file called filename and insert it at the
include spot.

The included text may be composed of XHTML, PHP or both.

The include() function is mostly used when the file is not required and the application should continue to
execute its process when the file is not found.

The include() function will only produce a warning (E. WARNING) and the script will continue to execute.

Example:-

File 1: menu.php
HOME
Contact

Staff

File 2 :Student.php

<htm[>

<body>

<?php

Include(“menu.php”);

// if menu.php is not found then also remaining echo statement is script will executed
>

</body>

</html>

require()

>

>
>

Syntax and uses is as same as include() but the difference is that, if the file is not found the remaining script
is also not executed.

The require() function is mostly used when the file is mandatory for the application.

The require() will produce a fatal error (E_ COMPILE_ERROR) along with the warning and the script will
stop its execution.

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.1.2 File operations: fopen(), fread(), fwrite(), fclose()
PHP File Handling

In PHP, File handling is the process of interacting with files on the server, such as reading files, writing to a file,
creating new files, or deleting existing ones. File handling is essential for applications that require the storage and
retrieval of data, such as logging systems, user-generated content, or file uploads.

Types of File Operations in PHP
Several types of file operations can be performed in PHP:
> Reading Files: PHP allows you to read data from files either entirely or line by line.
> Writing to Files: You can write data to a file, either overwriting existing content or appending to the end.

> File Metadata: PHP allows you to gather information about files, such as their size, type, and last modified
time.

» File Uploading: PHP can handle file uploads via forms, enabling users to submit files to the server.

Common File Handling Functions in PHP

e fopen() - Opens a file
e fclose() - Closes a file

e fread() - Reads data from a file

e fwrite() - Writes data to a file

o file exists() - Checks if a file exists
e unlink() - Deletes a file

Opening and Closing Files

> Before you can read or write to a file, you need to open it using the fopen() function,
which returns a file pointer resource. Once you're done working with the file, you
should close it using fclose() to free up resources.

Examples:
<?php

// Open the file in read mode
$file = fopen("gfg.txt", "r'");

if ($file) {
echo "File opened successfully!";
fclose($file); // Close the file

} else {
echo "Failed to open the file.";

}

TYBCA (Sem - 5) 2

https://www.geeksforgeeks.org/php/php-fopen-function-open-file-or-url/
https://www.geeksforgeeks.org/php/php-fclose-function/
https://www.geeksforgeeks.org/php/php-fread-function/
https://www.geeksforgeeks.org/php/php-fwrite-function/
https://www.geeksforgeeks.org/php/php-file_exists-function/
https://www.geeksforgeeks.org/php/php-unlink-function/

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

7>

File Modes in PHP

Files can be opened in any of the following modes:

» "w" — Opens a file for writing only. If the file does not exist, then a new file is created, and if the file
already exists, then the file will be truncated (the contents of the file are erased).

» "r" —File is open for reading only.

» "a" —File is open for writing only. The file pointer points to the end of the file. Existing data in the file is
preserved.

» "w+" — Opens file for reading and writing both. If the file does not exist, then a new file is created, and if
the file already exists, then the contents of the file are erased.

» "r+" —File is open for reading and writing both.

» "a+" —File is open for write/read. The file pointer points to the end of the file. Existing data in the file is
preserved. If the file is not there, then a new file is created.

> "x" — New file is created for write only.

1. Reading the Entire File

You can read the entire content of a file using the fread() function or the file get contents() function.

<?php

$file = fopen("gfg.txt", "r");
$content = fread($file, filesize("gfg.txt"));

echo $content;

fclose($file);

7>

2. Reading a File Line by Line

You can use the fgets() function to read a file line by line.

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

<?php

$file = fopen("gfg.txt", "r");

if ($file) {
while (($line = fgets($file)) !== false) {
echo $line . "
";

H
fclose($file);

7>

3. Writing to Files

You can write to files using the fwrite() function. It writes data to an open file in the specified mode.

<?php

// Open the file in write mode

$file = fopen("gfg.txt", 'w');

if ($file) {
$text = "Hello world\n";

fwrite($file, $text);

fclose($file);
}
2>
4. Deleting Files

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

Use the unlink() function to delete the file in PHP.

<?php

if (file_exists("gfg.txt")) {
unlink("gfg.txt");
echo "File deleted successfully!";
} else {

echo "File does not exist.";

7>

2.1.3 File upload using $ FILES and move uploaded file()
What is § FILES?

» $ FILES is a PHP superglobal that holds information about uploaded files via an HTML form.
» It’s an associative array of items sent via HTTP POST method with enctype="multipart/form-data".

Syntax of $ FILES:

$ FILES['input_name']['name'] // Original file name

$ FILES['input_name']['type'] // MIME type of the file

$ FILES['input_name']['tmp name'] // Temporary location on the server
$ FILES['input_name']['error'] // Error code

$ FILES['input_name']['size'] // Size of uploaded file in bytes

move uploaded_file()

» This function moves the uploaded file from the temporary location to a permanent location on the server.

Syntax:

‘ move uploaded file(file, dest)

Parameter Values

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File

Services Management
Parameter Description
file Required. Specifies the filename of the uploaded file
dest Required. Specifies the new location for the file
Example:

‘ $ FILES['myfile']['tmp_name']

Example: Basic File Upload

1. HTML Form (upload.html)

<IDOCTYPE html>
<htmI>
<head>
<title>Upload File</title>
</head>
<body>
<h2>Upload a File</h2>
<form action="upload.php" method="POST" enctype="multipart/form-data">
<label>Select file:</label>

—n"

<input type="file" name="myfile">

<input type="submit" name="submit" value="Upload">

</form>

</body>

</html>

2. PHP Script (upload.php)

<?php
if (isset($_POST['submit'])) {

$uploadDir = "uploads/";

TYBCA (Sem - 5) 6

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

SuploadFile = $uploadDir . basename($_FILES["myfile"]["name"]);

// Check if file was uploaded without errors
if ($_FILES["myfile"]["error"] === 0) {
if (move uploaded file($_FILES["myfile"]["tmp name"], $uploadFile)) {
echo " File uploaded successfully: " . htmlspecialchars($_FILES["myfile"]["name"]);
} else {
echo " Failed to move uploaded file.";
h
} else {

echo "Error uploading file. Error code: " . $ FILES["myfile"]["error"];

7>

Directory Structure

your_project/
— upload.html

I— upload.php
L uploads/ «— Make sure this folder exists and is writable (chmod 755 or 777)

2.1.4 File download using PHP headers

Key points
e Never echo anything before headers.
o Validate/whitelist the requested file (avoid .. traversal).
¢ Send correct headers: Content-Type, Content-Length, Content-Disposition.
e Use readfile() (simple) or stream in chunks (big files).

2.1.5 Directory operations: opendir(), readdir(), mkdir(), rmdir()
e opendir() — Opens a directory handle to read its contents.

o readdir() — Reads the next file or folder name from an opened directory handle.

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

e mkdir() — Creates a new directory with given permissions.
¢ rmdir() — Removes an empty directory from the file system.

1. opendir() + readdir() — Read directory contents

<?php
$dir = "uploads"; // folder to read

if ($handle = opendir($dir)) {
echo "Files in $dir:
";
while (($file = readdir($handle)) !== false) {
echo $file . "
"; // will include . and ..

§
closedir($handle);

7>

2. mkdir() — Create a new directory

<?php

$folder = "new_folder";

if (lis_dir($folder)) {
mkdir($folder);
echo "Folder created: $folder";
} else {

echo "Folder already exists.";

7>

3. rmdir() — Remove an empty directory

<?php
$folder = "old_folder";

TYBCA (Sem - 5)

504: Web Framework and
Services

if (is_dir($folder)) {
rmdir($folder); // only works if folder is empty
echo "Folder deleted: $folder";

} else {

echo "Folder not found.";

>

Unit 2: Advanced PHP and File
Management

4. Combine — opendir() + mkdir() + rmdir()

<?php

$dir = "test_dir";

// Create directory
if (Yis_dir($dir)) {
mkdir($dir);

echo "Created $dir
";

/I Read directory
if ($handle = opendir($dir)) {
echo "Contents of $dir:
";
while (($file = readdir($handle)) == false) {
echo $file . "
";

§
closedir($handle);

// Remove directory

if (is_dir($dir)) {
rmdir($dir);
echo "Deleted $dir";

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

>

2.2 Forms, Filters, and JSON
2.2.1 Designing and handling HTML forms

HTML forms allow users to send data to the server, and PHP can handle this data using § GET or § POST
superglobals.

Example - HTML + PHP Form Handling

<!-- form.html -->
<form action="process.php" method="post">
Name: <input type="text" name="username">

—n"

Email: <input type="email" name="email">

<input type="submit" value="Submit">

</form>

<!—php code-->

<?php

// process.php

if ($_SERVER['REQUEST METHOD'] === "POST") {
$name =$ POST['username'];

$email =$ POST['email'];

echo "Hello, $name! Your email is $email.";

7>

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.2.2 Server-side validation techniques

Server-side validation ensures that user input is checked on the server before processing, protecting against invalid
data and security threats.

Example — Simple Validation

<?php

if ($_SERVER['REQUEST METHOD'] === 'POST") {
$name = trim($_POST['username']);
$email = trim($_POST['email']);

$errors = [J;

if (empty($name)) {
Serrors[] = "Name is required.";
}
if (Milter var($email, FILTER VALIDATE EMAIL)) {

$errors[] = "Invalid email format.";

if (Serrors) {
foreach ($errors as $err) {
echo "<p style='color:red;>$err</p>";
}
} else {

echo "Form submitted successfully!";

>

TYBCA (Sem - 5) 11

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.2.3 PHP filters: filter var() and constants

What are Filters?
o Filters are used in PHP to validate (check) and sanitize (clean) user input.
e filter var() is the main function used for this.

Syntax:

‘ filter var(value, filter type);

Common Filter Constants:

Constant Purpose
FILTER VALIDATE EMAIL Checks if the value is a valid email.
FILTER VALIDATE_ INT Checks if the value is a valid integer.
FILTER _SANITIZE STRING Removes unwanted HTML and special characters.
FILTER VALIDATE URL Checks if the value is a valid URL.

Example — Validate Email

<?php

$email = "test@example.com";

if (filter var(Semail, FILTER VALIDATE EMAIL)) {
echo "Valid email!";
} else {

echo "Invalid email!";

}

>

Example — Sanitize String

<?php
$text = "<h1>Hello!</h1>";
$clean = filter var($text, FILTER _SANITIZE STRING);

echo $clean; // Output: Hello!

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

>

2.2.4 Parsing and generating JSON with json_encode() and json_decode()
What is JSON?

e JSON (JavaScript Object Notation) is a format to store and share data.

e PHP can generate JSON from arrays/objects and parse JSON back to PHP.

1. Generating JSON — json_encode()

<?php

$data=[
"name" => "Rahul",
"age" => 20,

"City” => "Surat"

$json = json_encode($data);
echo $json;
// Output: {"name":"Rahul","age":20,"city":"Surat"}

7>

2. Parsing JSON - json_decode()

<?php

$json ="{"name":"Rahul","age":20,"city":"Surat"}";
// Decode to PHP object
$obj = json_decode($json);

echo $obj->name; // Rahul

// Decode to PHP associative array

$arr = json_decode($json, true);

TYBCA (Sem - 5)

13

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

echo $arr["city"]; // Surat

>

2.3 Cookies, Sessions, and Emails
2.3.1 Creating and accessing cookies using setcookie() and $§ COOKIE
What is Cookies?

e A cookie is a small piece of data stored in the browser by the server.

e setcookie() is used to create or update a cookie.

e $ COOKIE is used to read cookie values.

e Cookies are sent back to the server with every request until they expire or are deleted.

Syntax:

setcookie(name, value, expire, path, domain, secure, httponly);

Example 1 — Create a Cookie

<?php
// Create cookie "username" valid for 1 hour

setcookie("username", "Rahul", time() + 3600, "/");

echo "Cookie 'username' has been set!";

/I Note: Cookie will be available on next page load

>

Example 2 — Read a Cookie

<?php
if (isset($_COOKIE["username"])) {

echo "Welcome back, " . $ COOKIE["username"];
}else {

echo "Hello, new visitor!";

7>

TYBCA (Sem - 5)

14

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

Example 3 — Delete a Cookie

<?php

/I Set cookie expiry time in the past to delete it
setcookie("username", "", time() - 3600, "/");
echo "Cookie deleted.";

>

e Cookies are stored on the client (browser).
e Always set cookies before any HTML output.
e Use time() to set expiry (e.g., time() + 86400 = 1 day).

2.3.2 Session management with session_start() and § SESSION
What is Session?

e A session stores data on the server for each user.

e Unlike cookies (stored in browser), session data is not visible to the user.

e session_start() must be called before any HTML output to start or resume a session.
e §$ SESSION is a special array that holds session variables.

Example 1 — Start a Session & Store Data

<?php

session_start(); // Start or resume a session

$ SESSION["username"] = "Rahul";
$ SESSION["role"] = "Student";

echo "Session variables are set!";

7>

TYBCA (Sem - 5) 15

504: Web Framework and
Services

Example 2 — Access Session Data

Unit 2: Advanced PHP and File
Management

<?php

session_start(); / Resume session

if (isset($ _SESSION["username"])) {
echo "Welcome, " . $ SESSION["username"];
echo "
Your role is: " . $ SESSION["role"];
} else {

echo "No session data found.";

}

>

Example 3 — Remove Session Data

<?php

session_start();

// Remove one variable

unset($ SESSION["username"]);

// Remove all session variables

session_unset();

// Destroy session completely

session_destroy();

echo "Session ended.";

>

e Sessions use a session ID stored in a cookie (PHPSESSID) to track the user.
e Always call session_start() before using $ SESSION.
e Use session_destroy() to end a session completely.

TYBCA (Sem - 5)

16

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.3.3 Sending Emails using mail() in PHP

e The mail() function is used to send emails directly from PHP.
e Works only if the server has mail service enabled (e.g., Sendmail, Postfix, SMTP).

syntax:

mail(to, subject, message, headers);

Example 1 — Simple Email

<?php

$to = "student@example.com";

$subject = "Welcome to PHP Class";

$message = "Hello Student,\n\nThis is a test email from PHP.";

$headers = "From: teacher@example.com";

if (mail($to, $subject, Smessage, $headers)) {
echo " Email sent successfully!";
}else {

echo " Email sending failed!";

}

>

Example 2 — Email with HTML Content

<?php

$to = "student@example.com";

$subject = "PHP HTML Email";

$message ="

<htmlI>

<head><title>PHP Email</title></head>

<body>

<h2>Welcome Student!</h2>

<p>This is an HTML email from your teacher.</p>
</body>

</html>

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

/I ' To send HTML mail, set content-type header
$headers = "MIME-Version: 1.0" . "\r\n";
$headers .= "Content-type:text/html;charset=UTF-8" . "\r\n";

$headers .= "From: teacher@example.com";

if (mail($to, $subject, Smessage, $headers)) {
echo " HTML Email sent!";

}else {
echo " Failed to send HTML email!";

h

7>

Example 3 — Multiple Recipients

<?php

$to = "student1@example.com, student2@example.com";
$subject = "Class Reminder";

$message = "This is a reminder for tomorrow's PHP session.";

$headers = "From: teacher@example.com";

mail($to, $subject, Smessage, $headers);

>

e Use a real email server or tools like XAMPP with Mercury Mail, SMTP services, or PHPMailer for testing.
e Always set proper From: header to avoid spam filters.
e For sending bulk or secure emails, PHPMailer is better than mail().

TYBCA (Sem - 5) 18

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.3.4 Email formatting: headers, subject, attachments

In PHP, emails are sent using the mail() function:

mail(to, subject, message, headers);

e to — Receiver’s email.

e subject — Email subject.

e message — Body of the email.

e headers — Additional information (From, CC, BCC, MIME type, etc.).

1. Sending a Simple Email

<?php

$to = "student@example.com";

$subject = "Welcome to PHP Class";

$message = "Hello Student,\nThis is a simple test email from PHP.";

$headers = "From: teacher@example.com";

if (mail($to, $subject, Smessage, $headers)) {
echo "Email sent successfully!";

} else {

echo "Email sending failed.";

}

>

2. Adding Headers (From, CC, BCC)

<?php
$to = "student@example.com";
$subject = "Class Notice";

$message = "Dear Student,\nTomorrow we have a PHP practical exam.";
$headers = "From: teacher@example.com\r\n";
$headers .= "CC: hod@example.com\r\n";

$headers .= "BCC: admin@example.com\r\n";

mail($to, $subject, Smessage, Sheaders);

TYBCA (Sem - 5)

19

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

>

3. Sending HTML Email (Formatting inside message)

<?php
$to = "student@example.com";

$subject = "HTML Email Example";

$message ="

<htmlI>

<head><title>Email Test</title></head>

<body>

<h2 style="color:blue;">Welcome to PHP Class</h2>
<p>This email is HTML formatted.</p>
</body>

</htm]>

n.
b

/I Always set content-type when sending HTML email
$headers = "MIME-Version: 1.0\r\n";
$headers .= "Content-type:text/html;charset=UTF-8\r\n";

$headers .= "From: teacher@example.com";

mail($to, $subject, Smessage, $headers);

7>

4. Sending Email with Attachment

Sending attachments requires MIME (Multipurpose Internet Mail Extensions) format.

<?php
$to = "student@example.com";
$subject = "Assignment File Attached";

$message = "Hello, please find the attached file.";

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

$file = "assignment.pdf"; // file must exist on server
$content = file_get contents($file);

$content = chunk_split(base64 encode($content));

$separator = md5(time());

$eol = "\r\n";

// Headers
$headers = "From: teacher@example.com\r\n";
$headers .= "MIME-Version: 1.0\r\n";

$headers .= "Content-Type: multipart/mixed; boundary=\"".$separator."\"\r\n";

// Body

$body = "--$separator$eol”;

$body .= "Content-Type: text/plain; charset=\"UTF-8\"$eol";
$body .= "Content-Transfer-Encoding: 7biteoleol";

$body .= $message . "$eol";

/I Attachment

$body .= "--$separator$eol";

$body .= "Content-Type: application/octet-stream; name=\"$file\"$eol";
$body .= "Content-Transfer-Encoding: base64$eol";

$body .= "Content-Disposition: attachment; filename=\"$file\"$eol$eol";
$body .= $content . "$eol";

$body .= "--$separator--";

// Send email
mail($to, $subject, $body, $headers);

>

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

Summary
e Headers — Add extra info like From, CC, BCC, MIME type.
e Subject — Title of the email.
o Attachments — Use MIME type encoding and base64.

e HTML Email — Format emails with colors, bold, headings.

2.4 OOP and Exception Handling in PHP

2.4.1 Creating classes and objects

e In PHP, Object-Oriented Programming (OOP) makes it easier to organize and reuse code. The two
fundamental building blocks in OOP are classes and objects.
e An object is an instance of a class created using the new keyword.

PHP Classes

e A class in PHP is a blueprint for creating objects. It defines the properties (variables) and methods
(functions) that the objects created from the class will have.

e By using classes, we can group related data and actions, making it easier to organize and manage our code.
In PHP a class is defined using the class keyword, followed by the class name and curly braces.

Syntax:

<?php
class Cars {

// PHP code goes here...

77>

PHP Objects

e An object is an instance of a class. When you create an object from the class, memory is allocated, and the
object can store data and perform actions defined in the class.
e To create an object, we use the new keyword.

Syntax:

$objectName = new ClassName($value);

TYBCA (Sem - 5) 22

504: Web Framework and
Services

Examples:

Unit 2: Advanced PHP and File
Management

<?php

// Defining a class

class Car {
// Properties (variables inside a class)
public $brand;

public $color;

// Method (function inside a class)
public function startEngine() {

return "The engine has started!";

// Creating an object of Car class

$myCar = new Car();

/I Accessing properties
$myCar->brand = "Tesla";

$myCar->color = "Red";

/I Accessing methods
echo $myCar->brand . " is " . $myCar->color . "
";

echo $myCar->startEngine();

7>

Output:

Tesla is Red

The engine has started!

TYBCA (Sem - 5)

23

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.4.2 Using constructors and property visibility

1. Constructors in PHP

A constructor is a special function in a class with the name __ construct().
It is automatically called when a new object is created.

e [tisused to initialize properties of the class.
¢ Saves us from setting values manually after object creation.

Example: Using Constructor

<?php
class Student {
public $name;

public $rollNo;

// Constructor
public function __ construct($name, $rollNo) {
$this->name = $name;

$this->rollNo = $rollNo;

// Method
public function displayInfo() {

return "Name: " . $this->name . ", Roll No: " . $this->rolINo;

/I Objects with constructor
$student] = new Student("Rahul", 101);

$student2 = new Student("Priya", 102);

echo $student1->displayInfo() . "
";
echo $student2->displaylnfo();

7>

TYBCA (Sem - 5)

24

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

Output:

Name: Rahul, Roll No: 101

Name: Priya, Roll No: 102

2. Property Visibility in PHP

In PHP, visibility controls how class properties and methods can be accessed.
e public — accessible everywhere (inside/outside class).
e private — accessible only inside the class.
e protected — accessible inside the class and child classes (inheritance).

Example: Property Visibility

<?php
class BankAccount {
public $accountHolder; // Public property

private $balance; // Private property

// Constructor
public function __ construct($holder, $amount) {
$this->accountHolder = $holder;

$this->balance = $amount;

// Public method to check balance
public function getBalance() {

return "Balance: $" . $this->balance;

// Public method to deposit money
public function deposit($amount) {
$this->balance += $amount;

return "Deposited: $" . $amount . " | New " . $this->getBalance();

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

/I Creating object

$account = new BankAccount("Amit", 5000);

echo $account->accountHolder . "
"; // Allowed (public)

// echo $account->balance; ERROR (private)

echo $account->getBalance() . "
";

echo $account->deposit(2000);

>

Output:

Amit

Balance: $5000

Deposited: $2000 | New Balance: $7000

2.4.3 Inheritance and method overriding

1. Inheritance in PHP
o Inheritance allows a class (child class) to use the properties and methods of another class (parent class).
e Use the keyword extends to inherit.
e It supports code reusability.

Example: Inheritance

<?php
// Parent class
class Person {

public $name;

public function __ construct($name) {

$this->name = $name;

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

public function showName() {

return "Name: " . $this->name;

// Child class (inherits Person)
class Student extends Person {

public $rollNo;

public function _ construct($name, $rollNo) {
// Call parent constructor
parent:: _construct($name);

$this->rollNo = $rollNo;

public function showDetails() {

return $this->showName() . ", Roll No: " . $this->rolINo;

// Create object of child class

$studentl = new Student("Rahul", 101);

echo $student1->showDetails();

7>

Output:

Name: Rahul, Roll No: 101

TYBCA (Sem - 5)

27

504: Web Framework and
Services

Types of Inheritance in PHP

1. Inheritance — Supported

e One child class inherits from one parent class.

Example

Unit 2: Advanced PHP and File

Management

class ParentClass { }

class ChildClass extends ParentClass { }

2. Multilevel Inheritance — Supported

A class inherits from another child class (grandparent — parent — child).

Example

class A {}
class B extends A { }

class C extends B { }

3. Hierarchical Inheritance — Supported

Multiple child classes inherit from the same parent class.

class ParentClass { }

class Childl extends ParentClass { }

class Child2 extends ParentClass { }

Summary

o Supported: Single, Multilevel, Hierarchical inheritance.

« Not Supported: Multiple inheritance, Hybrid inheritance.

o Solution for Multiple — Use Interfaces or Traits.

TYBCA (Sem - 5)

28

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2. Method Overriding in PHP

e Method overriding happens when a child class redefines (overrides) a method from the parent class.
e The child’s method replaces the parent’s method when called.
e Use parent::methodName() if you still want to call parent method.

Example: Method Overriding

<?php
// Parent class
class Teacher {
public function teach() {

return "Teaching in a general way.";

// Child class overrides the method
class MathTeacher extends Teacher {
public function teach() {

return "Teaching Mathematics with formulas and problem-solving.";

/I Another child class
class ScienceTeacher extends Teacher {
public function teach() {

return "Teaching Science with experiments and observations.";

/I Objects
$t1 = new MathTeacher();

$t2 = new ScienceTeacher();

TYBCA (Sem - 5)

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

echo $t1->teach() . "
";
echo $t2->teach();

7>

Output:

Teaching Mathematics with formulas and problem-solving.

Teaching Science with experiments and observations.

PHP - The final Keyword

e The final keyword can be used to prevent class inheritance or to prevent method overriding.
e The following example shows how to prevent class inheritance:

<?php
final class Fruit {
// some code

}

// will result in error
class Strawberry extends Fruit {
// some code

}

7>

The following example shows how to prevent method overriding:

<?php
class Fruit {
final public function intro() {
// some code

b
b

class Strawberry extends Fruit {
// will result in error
public function intro() {
// some code

}
}

>

TYBCA (Sem - 5)

30

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.4.4 Exception handling: try, catch, finally, throw
What is Exception Handling?

e Exceptions are errors that can be caught and handled without stopping the script.
e PHP provides try, catch, finally, and throw for exception handling.

Types of Exception Handling

® try - A function using an exception should be in a "try" block. If the exception does not trigger, the code
will continue as normal. However if the exception triggers, an exception is "thrown".

e throw - This is how you trigger an exception. Each "throw" must have at least one "catch".

e catch - A "catch" block retrieves an exception and creates an object containing the exception
information.

e finally - Always executes (cleanup code), no matter what happens.

1. try and catch

e Code inside try { } is executed.
e [fan exception occurs, control goes to catch { }.

Example

<?php
try {
// risky code
$num = 10/ 0; // Division by zero (error)
echo $num;
} catch (Exception $e) {
// handling error
echo "Error: " . $e->getMessage();
}
>
OUTPUT:

But in PHP, 10/0 raises a warning (not an exception).
So, usually, we throw exceptions manually.

2. throw

e Used to manually throw an exception.
e Must be caught by catch.

TYBCA (Sem - 5) 31

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

Example

<?php
function divide($a, $b) {
if ($b==0) {
throw new Exception("Division by zero is not allowed.");

}

return $a / $b;

try {
echo divide(10, 0);
} catch (Exception $e) {
echo "Caught Exception: " . $e->getMessage();

}

>

OUTPUT:

Caught Exception: Division by zero is not allowed.

3. finally

o The finally { } block always executes, whether an exception occurs or not.
e Useful for cleanup tasks (closing DB connection, files, etc.).

Example

<?php
function divide($a, $b) {
if ($b==0) {
throw new Exception("Division by zero not allowed.");

}

return $a / $b;

try {
echo divide(10, 2);
} catch (Exception $e) {

TYBCA (Sem - 5)

32

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

echo "Error: " . $e->getMessage();
} finally {

echo "
Execution completed!";
H
7>
OUTPUT:
5

Execution completed!

4. Multiple catch Blocks

e You can catch different types of exceptions separately.

<?php
try {
throw new InvalidArgumentException("Invalid argument!");
} catch (InvalidArgumentException $e) {
echo "Caught InvalidArgumentException: " . $e->getMessage();
} catch (Exception $e) {
echo "Caught General Exception: " . $e->getMessage();

7>

Summary
e try — Code that may throw exception.
o catch — Handles the exception.
o throw — Used to raise an exception.

o finally — Always executes (cleanup code).

TYBCA (Sem - 5)

33

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

2.4.5 Input Validation using Regular Expressions in PHP
What is Input Validation?

e Input validation means checking user inputs (like email, phone number, password) to make sure they
follow the correct format.

e In PHP, we use Regular Expressions (regex) with preg_match() function for validation.
preg_match() Function

Syntax:

‘ preg_match(pattern, string)

Returns 1 if pattern matches, O if not.
Common Validation Examples

1. Validate Email

<?php

$email = "student@example.com";

if (preg_match("/"[a-zA-Z0-9. %+-]t@[a-zA-Z0-9.-]+\.[a-z]{2,}$/", Semalil)) {
echo "Valid Email";
} else {

echo "Invalid Email";

}

7>
Output:
Valid Email

2. Validate Phone Number (10 digits)

<?php
$phone = "9876543210";

if (preg_match("/~[0-9]{10}$/", $phone)) {
echo "Valid Phone Number";
}else {

echo "Invalid Phone Number";

7>

TYBCA (Sem - 5)

34

504: Web Framework and Unit 2: Advanced PHP and File
Services Management

Output:
Valid Phone Number

3. Validate Username (only letters & numbers, 5—15 chars)

<?php

$username = "student123";

if (preg_match("/"[a-zA-Z0-9]1{5,15}$/", $username)) {
echo "Valid Username";
}else {

echo "Invalid Username";

}

77>
Output:

Valid Username

4. Validate Strong Password

At least: 1 uppercase, 1 lowercase, 1 digit, 1 special character, min 8 chars

<?php
$password = "Abcd@1234";

if (preg_mateh("/(?=*[A-Z])(?=*{a-z])(?=*[0-91/(=*[\W]).{8,}$/", Spassword)) {
echo "Strong Password";
} else {

echo "Weak Password";

}

7>

Output:

Strong Password

TYBCA (Sem - 5) 35

504: Web Framework and
Services

Unit 2: Advanced PHP and File
Management

TYBCA (Sem - 5)

36

